KV2.1 K+ channels underlie major voltage-gated K+ outward current in H9c2 myoblasts.
نویسندگان
چکیده
The H9c2 clonal cell line derived from embryonic rat ventricle is an in vitro model system for cardiac and skeletal myocytes. We used the whole-cell patch clamp technique to characterize the electrophysiological and pharmacological properties of an outward K+ current (IK(V)) and determined its molecular correlate in H9c2 myoblasts. IK(V) was activated by threshold depolarization to -30 mV, and its current amplitude and rate of activation increased with further depolarizations. IK(V) inactivated slowly with a time constant of 1-2 s, and the V(0.5) for steady-state inactivation was -37.9 +/- 4.6 mV (n = 10). Tetraethylammonium and quinidine suppressed IK(V) with IC(50)'s of 3.7 mM and 11.6 microM, respectively. Using RT-PCR analysis we found that the K(V )2.1 gene is the most abundantly expressed among genes for K(V)1.2, 1.4, 1.5, 2.1, 4.2, and 4.3, and by Western blotting we confirmed the synthesis of the K(V)2.1 alpha-subunit protein. We conclude that IK(V), the predominant voltage-gated outward current in H9c2 myoblasts, flows through the channels comprised of the K(V)2.1-subunit gene product.
منابع مشابه
Extracellular chloride regulation of Kv2.1, contributor to the major outward Kv current in mammalian outer hair cells.
Outer hair cells (OHC) function as both receptors and effectors in providing a boost to auditory reception. Amplification is driven by the motor protein prestin, which is under anionic control. Interestingly, we now find that the major, 4-AP-sensitive, outward K(+) current of the OHC (I(K)) is also sensitive to Cl(-), although, in contrast to prestin, extracellularly. I(K) is inhibited by reduc...
متن کاملHeterogeneity of Kv2.1 mRNA expression and delayed rectifier current in single isolated myocytes from rat left ventricle.
Expression of the voltage-gated K(+) channel Kv2.1, a possible molecular correlate for the cardiac delayed rectifier current (I(K)), has recently been shown to vary between individual ventricular myocytes. The functional consequences of this cell-to-cell heterogeneity in Kv2.1 expression are not known. Using multiplex single-cell reverse transcriptase-polymerase chain reaction (RT-PCR), we dete...
متن کاملIdentification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons.
Molecular cloning studies have revealed the existence of a large family of voltage-gated K+ channel genes expressed in mammalian brain. This molecular diversity underlies the vast repertoire of neuronal K+ channels that regulate action potential conduction and neurotransmitter release and that are essential to the control of neuronal excitability. However, the specific contribution of individua...
متن کاملNeonatal rat cardiac fibroblasts express three types of voltage-gated K+ channels: regulation of a transient outward current by protein kinase C.
Cardiac fibroblasts regulate myocardial development via mechanical, chemical, and electrical interactions with associated cardiomyocytes. The goal of this study was to identify and characterize voltage-gated K(+) (Kv) channels in neonatal rat ventricular fibroblasts. With the use of the whole cell arrangement of the patch-clamp technique, three types of voltage-gated, outward K(+) currents were...
متن کاملReactive oxygen species-induced activation of p90 ribosomal S6 kinase prolongs cardiac repolarization through inhibiting outward K+ channel activity.
p90 ribosomal S6 kinase (p90RSK) is activated in cardiomyopathies caused by conditions such as ischemia/reperfusion injury and diabetes mellitus in which prolongation of cardiac repolarization and frequent arrhythmias are common. Molecular mechanisms underlying the electric remodeling in cardiac diseases are largely unknown. In the present study, we determined the role of p90RSK activation in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Japanese journal of physiology
دوره 52 6 شماره
صفحات -
تاریخ انتشار 2002